Ontogenetic, gravity-dependent development of rat soleus muscle.
نویسندگان
چکیده
We tested the hypothesis that rat soleus muscle fiber growth and changes in myosin phenotype during the postnatal, preweaning period would be largely independent of weight bearing. The hindlimbs of one group of pups were unloaded intermittently from postnatal day 4 to day 21: the pups were isolated from the dam for 5 h during unloading and returned for nursing for 1 h. Control pups were either maintained with the dam as normal or put on an alternating feeding schedule as described above. The enlargement of mass (approximately 3 times), increase in myonuclear number (approximately 1.6 times) and myonuclear domain (approximately 2.6 times), and transformation toward a slow fiber phenotype (from 56 to 70% fibers expressing type I myosin heavy chain) observed in controls were inhibited by hindlimb unloading. These properties were normalized to control levels or higher within 1 mo of reambulation beginning immediately after the unloading period. Therefore, chronic unloading essentially stopped the ontogenetic developmental processes of 1) net increase in DNA available for transcription, 2) increase in amount of cytoplasm sustained by that DNA pool, and 3) normal transition of myosin isoforms that occur in some fibers from birth to weaning. It is concluded that normal ontogenetic development of a postural muscle is highly dependent on the gravitational environment even during the early postnatal period, when full weight-bearing activity is not routine.
منابع مشابه
The Effect of Eight Weeks Aerobic and Resistance Training on AMP-Activated Protein Kinase (AMPK) Gene Expression in Soleus Muscle and Insulin Resistance of STZ-Induced Diabetic Rat
Background: AMPK regulation is one of biggest target in T2D and metabolic syndrome research. Therefore, the present study is aimed to investigate The effect of 8 weeks aerobic and Resistance training on AMP-activated protein kinase (AMPK) gene expression in soleus muscle and insulin resistance of STZ-induced diabetic rat. Methods: The research method of present study was experimental. For this...
متن کاملHypergravity from conception to adult stage: effects on contractile properties and skeletal muscle phenotype.
This study examined the effects of an elevation of the gravity factor (hypergravity--2 g) on the molecular and functional characteristics of rat soleus and plantaris muscles. Long Evans rats were conceived, born and reared (CBR) continuously in hypergravity conditions until the age of 100 days. Whole muscle morphological parameters, Ca2+ activation characteristics from single skinned fibers, tr...
متن کاملEffects of microgravity on myogenic factor expressions during postnatal development of rat skeletal muscle.
To clarify the role of gravity in the postnatal development of skeletal muscle, we exposed neonatal rats at 7 days of age to microgravity. After 16 days of spaceflight, tibialis anterior, plantaris, medial gastrocnemius, and soleus muscles were removed from the hindlimb musculature and examined for the expression of MyoD-family transcription factors such as MyoD, myogenin, and MRF4. For this pu...
متن کاملThe Effect of a 6-week Endurance Training on BDNF and TrKB Gene Expression in the Soleus of Rats with Diabetic Neuropathy
Background & Aims: Diabetic neuropathy can lead to atrophy and weakness of distally located muscles and lack of neurotrophic support is believed to contribute to the development of these consequences. So, the aim of the present study was to investigate BDNF and TrKB gene expression in soleus muscle of Wistar male rats with diabetic neuropathy following endurance training....
متن کاملParallel and divergent adaptations of rat soleus and plantaris to chronic exercise and hypergravity.
It has been demonstrated that endurance exercise and chronic acceleration, i.e., hypergravity, produce comparable adaptations in a variety of physiological systems, including decreased adiposity, increased energy metabolism, and altered intermediary metabolism. Similar adaptations have not been demonstrated for skeletal muscle per se. To further differentiate between these general responses wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 280 4 شماره
صفحات -
تاریخ انتشار 2001